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Abstract. We propose a method, based on a generalized Heisenberg algebra (GHA), to reproduce the
anharmonic spectrum of diatomic molecules. The theoretical spectrum generated by GHA allows us to
fit the experimental data and to obtain the dissociation energy for the carbon monoxide molecule. Our
outcomes are more accurate than the standard models used to study molecular vibrations, namely the
Morse and the q-oscillator models and comparable to the perturbed Morse model proposed by Huffaker
[1], for the first experimental levels. The dissociation energy obtained here is more accurate than all previous
models.

PACS. 33.20.Tp Vibrational analysis – 02.20.Uw Quantum groups – 03.65.Fd Algebraic methods –
32.30.Bv Radio-frequency, microwave, and infrared spectra

1 Introduction

Vibrational spectroscopy has a fundamental role in molec-
ular physics and its applications extend to other fields like
astronomy [2], biology [3] and earth and environmental
sciences [4]. Vibrational molecular analysis provides im-
portant informations on the structure of the molecules.
Recently, the development of the powerful experimental
techniques allow the study of highly excited vibrational
states [5,6]. In Born-Oppenheimer approximation, elec-
tronic, rotational and vibrational quantum states [3] can
be considered separately and molecular vibrations can be
approximately described by the harmonic oscillator [7].
However, this model fails to describe the highest molecu-
lar vibrational modes and consequently does not provide
the correct dissociation energies. One of the first mod-
els that introduce a correction in the harmonic term, was
proposed by Morse [8]. In the Morse model the harmonic
potential is replaced, in the Schrödinger equation (SE),
by the the so-called Morse potential. This model can be
solved analytically and reproduces faithfully the experi-
mental vibrational levels of diatomic molecules, providing
a spectrum with an upper bound. In order to obtain bet-
ter fittings with the experimental data, several ab initio
methods, based on the use of Morse-like, Kratzer-like or
modified versions of these or other potential functions have
been used to study molecular systems [9–12]. There are
also several ab initio and algebraic methods to calculate
dissociation energies [13,14].

a e-mail: jeferson@cbpf.br

Despite the fact that ab initio methods are able to ob-
tain good approximations for spectra of many molecules,
some authors have pointed out some limitations to these.
Angelova et al. [15], noted that the Morse potential con-
tains just quadratic corrections and one needs to use the
empirical Dunham expansion to fit the highest vibrational
energies. Iachello and Levine [16], remarked that the solu-
tion of the SE is very difficult in the case of two- and three-
dimensions and, at this point, algebraic methods could
bring some advantage. Problems related to the dissocia-
tion energy estimation and an algebraic energy method to
calculate it, were described by Sun et al. [17]. Besides the
facts above mentioned, there are some molecules whose
potentials deviate strongly from Morse-like potentials [18].

The algebraic approach to study molecular vibrational
and rotational spectra was pioneered by Iachello [19]. The
method has been proved useful for accurately calculating
highly excited vibrational levels and describing the whole
spectrum of complex molecules, while maintaining its sim-
plicity, in cases where the use of ab initio methods are
not feasible in practice [20,21]. Furthermore, algebraic ap-
proach is able to provide the energy spectra of molecules
without considering the shape of the potential and the
Schrödinger equation. The method has been used to study
the rotational and vibrational spectra of molecules [5,22].
A brief review of the Lie algebraic method in molecular
and other systems can be seen in reference [23].

Deformed Heisenberg algebras (or q-oscillators) have
attracted considerable attention since they have been pro-
posed [24–26], due both to mathematical interest and
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to their possible physical applications [27] (see Ref. [28]
for a review). They are non-trivial generalizations of the
Heisenberg algebra having as generators ladder operators
and the number operator. These algebras are character-
ized by the deformation parameter q. It is interesting to
notice that for some set of values of the q-deformation
parameter, namely 0 < q < 1, the energy spectrum asso-
ciated with the deformed Heisenberg algebras presents an
upper bound, a situation which is similar to the typical
spectrum of a composite particle [29]. This property sug-
gests that deformed Heisenberg algebras might be a useful
tool to investigate the spectrum of composite particles. Di-
atomic molecules are an important example of composite
particles. Thus, deformed algebra approach has been used
to study the molecular spectrum of diatomic molecules
[15,30–32] as an alternative method to the usual ab initio
approaches. Within this formalism q-oscillators are used
as a model of anharmonic oscillators, whose spectrum is
similar to the molecular vibrational spectrum. Advantages
of this method are that it has few parameters, analytical
expressions and fits well the first experimental levels. How-
ever, as it will become clear later, the model does not pro-
vide the correct dissociation energy for the CO molecule,
for example, i.e., it fails to fit the highest vibrational
levels.

Possible physical interpretations of the q-oscillator al-
gebras, have been discussed in many works. For example,
in molecular physics, the potential associated to the q-
oscillator was studied by several authors [33–35]. In many-
body theory, a possible interpretation of the q parameter
was given by Sviratcheva et al. [36].

Recently, a generalized Heisenberg algebra (GHA),
where the commutation relations among the operators de-
pend on a characteristic function of the generalized num-
ber operator, has been proposed [26]. If the characteristic
function is linear, with slope q2, the algebra corresponds to
the q-oscillator algebra. In the present work we introduce
and implement a nonlinear GHA which is able to describe
typical features of the vibrational molecular spectrum of
the carbon monoxide molecule. The spectrum generated
by this nonlinear GHA (nl-GHA) allows us to fit the 20
first vibrational transitions and to obtain the correct dis-
sociation energy for the CO molecule, providing better
global results than the methods above mentioned.

The paper is organized as follows. In Section 2 we dis-
cuss the solution of the Schrödinger equation (SE) with
Morse potential. In Section 3 we introduce the GHA
method. In Section 4 we apply our GHA model to the
CO molecule. Finally, Section 5 is devoted to discussions
and conclusions.

2 Morse potential for diatomic molecules:
vibrational levels

Let us now turn our attention to one of the most familiar
quantum description of diatomic molecules. For low en-
ergy levels, the molecular potential can be approximated
by the harmonic potential, whereas for high energy lev-
els this approximation breaks down. In fact, the higher

vibrational transitions exhibits a certain degree of anhar-
monicity. Thus, to take into account anharmonic terms
and rotational effects, nonlinear terms must be introduced
in the energy expression besides the harmonic one [3]:

Eν =
∑

l

= Yl,0

(
ν +

1
2

)l

, (1)

where ν is the vibrational quantum number. The above
expression corresponds to the expansion obtained by
Dunhan, using the WKB method [1], without rotational
terms. An analytical solution for the SE, which corre-
sponds to the second order truncation of equation (1),
was obtained by Morse [8] using the so-called Morse po-
tential. The solution of the SE for this potential gives the
following expression for the vibrational energy

εn = −D + hω

[(
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2

)
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(
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1
2
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]

,

(ν = 0, 1, 2, ...,
k − 1

2
), (2)

where χe is a positive constant called the anharmonicity
coefficient, ω is the fundamental frequency, ν is the vibra-
tional quantum number and k = 1/χe > 1. The anhar-
monicity coefficient is related to the dissociation energy:

χe =
hω

4D
. (3)

The energy levels obtained agree reasonably well with ex-
perimental data for many molecules [3]. The maximum
allowed value for n in equation (2) is such that the SE
solution remains finite. One can also show that this value
is given by

νmax =
1

2χe
− 1

2
. (4)

Hence, there is a maximum energy value ενmax beyond
which the system is not bounded.

In order to improve the Morse results, several pertur-
bative methods, based on the Morse or other analytical
or numerical potential, have been proposed. Huffaker [1],
used a perturbed Morse model to calculate the first terms
of the Dunhan expansion (1) for the CO molecule. He
introduced a Morse-like potential function and using 28
spectral lines of the CO molecule [37], calculated eight pa-
rameters of the potential curve. This model is good when
compared with the model obtained via RKR method by
Mantz et al. [37]. If one ignores the rotational degree of
freedom (l = 0), the model has seven parameters.

3 The generalized Heisenberg algebra

In [26], Curado e Rego-Monteiro proposed an algebra
called GHA which is generated by three operators J0, A
and A†, which are generalizations of the usual number,



J. de Souza et al.: A method based on a nonlinear generalized Heisenberg algebra 207

creation annihilation operators, satisfying the following
relations:

J0 A† = A† f(J0), (5)
AJ0 = f(J0)A, (6)

[
A, A†] = f(J0) − J0, (7)

where † is the Hermitian conjugate, (A†)† = A, J†
0 = J0

and f(J0) is an analytical function of J0, called the char-
acteristic function. Assuming the existence of a vacuum
state represented by |0〉 (J0|0〉 ≡ α0|0〉), it can be shown
that

J0 |m〉 = fm(ε0) |m〉, m = 1, 2..., (8)

A† |m〉 = Mm |m + 1〉, (9)
A |m〉 = Mm−1 |m − 1〉, (10)

where M2
m−1 = fm(ε0) − ε0, ε0 is the lowest J0 eigen-

value and fm(ε0) is the mth iteration of the function f .
This algebra describes a class of Heisenberg-like algebras
of quantum systems, having J0 eigenvalues given by

εn = f(εn−1), (11)

where εn and εn−1 are two successive eigenvalues [38].
Therefore, the J0 eigenvalues can be obtained iteratively
and they can be upper bounded or not, depending on the
characteristic function, the values of the function param-
eters, and the initial value ε0. For each kind of function,
the values of the parameters and the initial values deter-
mine the existence or not of the fixed points, ε� = f(ε�)
[39], and their stability. As a consequence, different spec-
tra are obtained for different functions and the eigenval-
ues behavior can be analyzed using dynamical systems
techniques. For the linear case the characteristic func-
tion is f(J0) = q J0 + s, and the resulting algebra de-
scribes the one-parameter GHA studied in [26] and can be
mapped into the q-oscillator algebra. If q = 1, the stan-
dard Heisenberg algebra is recovered. However, the con-
nection between the generalized operators and the stan-
dard position and momentum operators is not known.

A graphical analysis of the functions f(ε) = qε+ s and
y = ε is shown in Figure 1. The intersection between the
two lines is identified as the fixed point of the recurrence
equation εn = qεn−1 + s. The most interesting cases are
obtained for 0 < q < 1 and ε0 < s/(1 − q), as under
these conditions the energy spectrum has an upper bound
ε∗ = s/(1 − q).

This behavior is similar to the energy spectrum of
bounded systems, for instance diatomic molecules, and
Dq ≡ ε∗ − ε0 can be related to the dissociation energy of
the system. This interesting result enables us to perform a
phenomenological investigation of bounded systems, such
as a diatomic molecule, via GHA. This approach has been
performed by several authors [15,28].

Fig. 1. Graphical analysis of a linear characteristic function,
f(ε) for 0 < q < 1 with ε0 < s/(1 − q). Note that, as the func-
tion is iterated, the energy value approaches the stable point
ε∗ = s/(1 − q) (the upper bound). The dissociation energy of
the system is proportional to (ε∗ − ε0).

4 GHA and vibrational molecular spectrum

4.1 Linear case — (q-oscillator)

We will now study the spectrum generated by the lin-
ear GHA mentioned above, which correspond to the q-
oscillator algebra. To study the vibrational spectrum of
diatomic molecules via GHA formalism, we use a result
developed in [39,40]. Let us start with the general Hamil-
tonian

H = �ω(c1AA† + c2A
†A + c3), (12)

where A and A† obey the relations (5–7) and c1, c2 and
c3 are real numbers. Choosing c1 = c2 = 1 and c3 = 0,
and using the equations (8-10) we get [39]

H = �ω (f(J0) + J0 − 2ε0) . (13)

Therefore, for the linear case f(J0) = qJ0 + s (q < 1) we
have:

H = �ω ((q + 1)J0 + s − 2ε0) . (14)

We assume s = 1, once it does not affect the behaviour of
the eigenvalues [26]. Applying the Hamiltonian (14) on the
eigenstate |ν〉 of J0 (with � = 1), we obtain H |ν〉 = Eν |ν〉,
where the energy eigenvalues are given by

Eν = ω[(q + 1)fν(ε0) + s − 2ε0], (15)

where fν(ε0) = qνε0 + s(qν − 1)/(q − 1). After some alge-
bra we obtain

Eν = ω
(
Mq − Lqq

ν+1/2
)

, (16)

with

Lq =
1 + q

q1/2

(
ε0 − s

1 − q

)
=

1 + q

q1/2
(ε0 − ε∗)

and

Mq = 2
(

s

1 − q
− ε0

)
= 2(ε∗ − ε0).
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Table 1. Values of the parameters used in each model.

model parameters values

Morse χe 0.0062
q-oscillator q 0.98646
(linear GHA) ε0 36.98
nonlinear GHA ε0 0.9235

q 0.9872
p −1.43 × 10−7

perturbed Morse σ 77.21317
(Huffaker) τ 83769.28

b4 0.036067
b5 0.017505
b6 0.014945
b7 0.010770
b8 0.008142

The maximum energy (ν → ∞) for this system is given
by E∞ = ωMq = 2ω(ε∗ − ε0), and the dissociation energy
(E∞ − E0) is then

Dq = ω(1 + q)(ε∗ − ε0). (17)

The q-parameter can be interpreted as being related to the
anharmonicity constant, χe = −τ/2, where q = eτ [35].

We will now apply the above results to the carbon
monoxide molecule spectrum and compare it with both
experimental data and the spectra obtained by using the
Morse, the perturbed Morse and the q-oscillator models.
We used the data provided by the HITRAN database [41]
and chose the lines in which the molecules are in the
electronic fundamental state. Also, we selected the lines
whose rotational quantum numbers are zero. Thus, there
remained the spectral lines which represent the first 21
pure vibrational transitions of the CO molecule.

In order to fit the parameters (q and ε0) to the ex-
perimental data, note that the logarithm of the difference
between two successive levels of equation (16), as a func-
tion of ν, is a straight line with slope ln q. Taking the
logarithm of the difference between two successive data
points, we obtain the value of q by evaluating the slope of
the curve after a linear regression. The fitted parameters
are shown in Table 1. The linear GHA spectrum agrees
well with the experimental data (see Tab. 3 and Fig. 2)
mainly in the case of the 20 first vibrational transitions.
However, the D value calculated by equation (17) devi-
ates strongly from the experimental value, as can be seen
in Table 2. This means that, although the q-oscillator rel-
ative errors (∆E = (Etheor. − Eexp.)/Eexp.) are smaller
than the relatives error obtained by the Morse model, for
most of the 20 first vibrational transitions (Fig. 2), the
approach based on the q-oscillator is not able to fit higher
frequency vibrational levels.

4.2 Nonlinear case

As seen above, the linear GHA (i.e. the q-oscillator), is
a good model only for the first levels. In order to fit the

Fig. 2. Comparison between the relative errors of the Morse
(◦), q-oscillator (�), nonlinear GHA (�) models and perturbed
Morse (�). We can see that the nonlinear GHA errors are
smaller (in almost all data points) than the Morse and q-
oscillator models.

Table 2. Values of the dissociation energy calculated for each
model.

model Dissociation
energy (cm−1)

Experimental 89591.35
Morse 86426.44
q-oscillator 158970.48
Perturbed Morse (Ref. [1]) 96476.01
Perturbed Morse (Ref. [14]) 95394.23
nonlinear GHA 89987.76

energy levels and to obtain the correct dissociation energy
we were led to use a nonlinear functional f(x) in GHA
(5–7). We found that by using the functional

f(x) = p x4 + q x + 1, (18)

it is possible to obtain a good fit with the experimental
data and the correct dissociation energy. Due to its non-
linearity, the spectrum generated by this nonlinear GHA
does not have an analytical closed expression like equa-
tion (16). In this case the spectrum can only be calculated
numerically.

For the sake of simplicity, we start from the Hamilto-
nian

H = �w(A†A + ε0) = �wJ0, (19)
which is derived from Hamiltonian (12) with c1 = 0, c2 = 1
and c3 = ε0. Replacing f(J0) given by equation (18) in
relations (5–7) and applying H on the eigenstates of J0

(with � = 1) we obtain

Eν = wfν(ε0), (20)

where fν = εν is given by:

εn+1 = pε4n + qεn + 1. (21)
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Table 3. Vibrational spectrum of the CO molecule. Compari-
son of the experimental data with the Morse, q-oscillator, per-
turbed Morse and GHA model. Botton: root mean square er-
rors. Experimental data from HITRAN database. ∗There is a
systematic difference of the 0.03 cm−1 between the data used
in references [1,37].

energy (cm−1)
transition exp. Morse nonlinear linear perturbed
line GHA GHA Morse∗

1 → 0 2143.24 2143.30 2144.56 2152.46 2143.27
2 → 1 2116.76 2116.39 2117.10 2123.32 2116.79
3 → 2 2090.34 2089.48 2089.99 2094.57 2090.37
4 → 3 2064.00 2062.57 2063.19 2066.21 2064.02
5 → 4 2037.72 2035.66 2036.68 2038.23 2037.73
6 → 5 2011.51 2008.75 2010.44 2010.63 2011.51
7 → 6 1985.38 1981.84 1984.43 1983.41 1985.35
8 → 7 1959.32 1954.93 1958.62 1956.55 1959.26
9 → 8 1933.33 1928.01 1932.97 1930.06 1933.24
10 → 9 1907.43 1901.10 1907.43 1903.93 1907.29
11 → 10 1881.61 1874.19 1881.99 1878.15 1881.40
12 → 11 1855.85 1847.28 1856.58 1852.72 1855.59
13 → 12 1830.19 1820.37 1831.18 1827.63 1829.84
14 → 13 1804.61 1793.46 1805.74 1802.89 1804.16
15 → 14 1779.11 1766.55 1780.23 1778.48 1778.55
16 → 15 1753.69 1739.64 1754.61 1754.39 1753.00
17 → 16 1728.36 1712.73 1728.85 1730.64 1727.53
18 → 17 1703.12 1685.82 1702.90 1707.21 1702.13
19 → 18 1677.96 1658.91 1676.75 1684.09 1676.79
20 → 19 1652.88 1632.00 1650.37 1661.29 1651.53
rms error - 0.0013 0.00048 0.00012 0.00007

We use the values generated by equation (20) with fν(ε0)
given by equation (21) in order to fit the q, p and ε0 param-
eters with the experimental data. The dissociation energy
is given by

DGHA = E∞ − E0 = w(ε∗ − ε0), (22)

where ε∗ is the stable fixed point of the recurrence equa-
tion (21).

The fitted parameters are shown in Table 1. The dis-
sociation energy is shown in Table 2. In Table 3 we com-
pare the energy levels obtained with the different models
referred in this work with the experimental data. The rel-
ative errors are shown in Figure 2. We can see that the
nonlinear GHA with the functional 18 provides better fit-
tings with experimental data than both the q-oscillator
and Morse models and it is comparable to the Huffaker
model [1]. Furthermore, nonlinear GHA provides a more
accurate dissociation energy when compared to that ob-
tained in all other methods. These results show that our
model is a good method for obtaining the higher anhar-
monic energy levels of the CO molecule.

As the p parameter is very small (Tab. 1), if ε0 is also
small, the first iterations of equation (21) are dominated
by the linear term. The nonlinear term becomes relevant
as the number of iterations increase. The difference be-
tween two successive energy levels decreases up to zero
as the function (21) is iterated. Because the p parameter
is negative, the difference between two successive energy
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Fig. 3. Normalized and shifted energy spectrum generated
by the Morse (�), q-oscillator (+), perturbed Morse (�) and
nonlinear GHA (·) models, and experimental data (◦). The
dashed line represents the normalized experimental dissocia-
tion energy value. We can see that the dissociation energy of
the nonlinear GHA lies on the experimental dissociation en-
ergy (dashed curve) while the q-oscillator and Morse spectrum
are respectively above and below dissociation energy line. In-
set figure shows in detail the Morse and the nonlinear GHA
energy curves close to dissociation energy line. Note that the
Morse curve flattens before reaching the experimental dissoci-
ation energy while the nonlinear GHA energy curve approach
it as ν increase.

levels tends to zero. Thus, the nonlinear term flattens the
energy curve faster than in the pure linear and the per-
turbed Morse cases, but slightly slower than the Morse
Model, as we can see in Figure 3.

We would like to stress that besides these accurate
fittings, the nonlinear GHA give us an extremely simple
way to estimate higher transitions of CO. We only need
to iterate equation (21) up to the required level.

5 Conclusion and perspectives

In this work we have proposed a method based on GHA to
reproduce the vibrational molecular spectrum of diatomic
molecules. For the CO molecule, we have shown that the
previous method based on the q-oscillator algebra (linear
GHA) reproduce the vibrational molecular spectrum for
the 20 first vibrational transitions of the CO molecule, but
it does not provide the correct dissociation energy, i.e., this
model fails when describing higher vibrational levels. Us-
ing a nonlinear functional (4th order) in the GHA we were
able to fit the experimental energy levels and to calculate
the dissociation energy for the CO molecule with good ac-
curacy. For this molecule the nonlinear GHA has provided
better global results than the usual Morse and perturbed
Morse models, and the q-oscillator model. This work shows
that GHA can be used as a simple phenomenological tool
to study composite particles.
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GHA produces different spectra for different charac-
teristic functions. The GHA spectrum could be related to
deformations in the harmonic potential. Indeed, this alge-
bra can reproduces a variety of spectra once we are able to
find the appropriate characteristic function. Consequently,
this algebra could be used to study other molecules, by
simply choosing the appropriate characteristic function.
In an even more general fashion, de Souza et al. [42] have
constructed a more general structure that depends on two
functional. This new algebraic structure can reproduce a
even greater variety of the spectrum behaviour, allowing
us to work with two quantum numbers.

We have introduced a new method which is a gener-
alization of former algebraic methods. The method was
tested for the CO molecule and was able to fit accurately
the experimental data of the 20 first transitions, to predict
unknown levels, and to calculate the correct dissociation
energy. The results obtained in this work motivate us to
explore deeper the relation between the GHA and molec-
ular systems. These investigations may include: (1) the
study of the relation between the functional parameters
and the molecular parameters; (2) the investigation of the
potential curve underlying the GHA; (3) the account of
electronic and rotational states; (4) the study of the appli-
cability of the GHA method for larger molecules. Items 3
and 4 could be performed by choosing other characteristic
functions and/or extending the number of operators.

We thank E.M.F. Curado and M.A. Rego-Monteiro for fruit-
ful discussions and remarks and S. Queiros, N. Lemke, E.R.P.
Delfin, F.D. Nobre and F. Baldovin for manuscript revision. We
thank the referees for their careful reading of the manuscript,
constructive comments and suggestions. We would also like
to acknowledge the partial support of CNPq and PRONEX
(Brazilian agencies).
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